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Abstract. Vegetation dynamics in complex landscapes depend on interactions among
environmental heterogeneity, disturbance, habitat fragmentation, and seed dispersal
processes. We explore how these features combine to affect the regional abundances and
distributions of three Quercus (oak) species in central Spain: Q. faginea (deciduous tree), Q.
ilex (evergreen tree), and Q. coccifera (evergreen shrub). We develop and parameterize a
stochastic patch occupancy model (SPOM) that, unlike previous SPOMs, includes
environmentally driven variation in disturbance and establishment. Dispersal in the model
is directed toward local (nearby) suitable habitat patches, following the observed seed-caching
behavior of the European Jay. Model parameters were estimated using Bayesian methods and
survey data from 12 047 plots. Model simulations were conducted to explore the importance of
different dispersal modes (local directed, global directed, local random, global random). The
SPOM with local directed dispersal gave a much better fit to the data and reproduced observed
regional abundance, abundance–environment correlations, and spatial autocorrelation in
abundance for all three species. Model simulations suggest that jay-mediated directed dispersal
increases regional abundance and alters species–environment correlations. Local dispersal is
estimated to reduce regional abundances, amplify species–environment correlations, and
amplify spatial autocorrelation.
Parameter estimates and model simulations reveal important species-specific differences in

sensitivity to environmental perturbations and dispersal mode. The dominant species Q. ilex is
estimated to be highly fecund, but on the edge of its climatic tolerance. Therefore Q. ilex gains
little from directed dispersal, suffers little from local dispersal, and is relatively insensitive to
changes in habitat cover or disturbance rate; but Q. ilex is highly sensitive to altered drought
length. In contrast, the rarest species, Q. coccifera, is well adapted to the climate and soils but
has low fecundity; thus, it is highly sensitive to changes in dispersal, habitat cover, and
disturbance but insensitive to altered drought length. Finally, Q. faginea is estimated to be
both at the edge of its climatic tolerance and to have low fecundity, making it sensitive to all
perturbations. Apparently, co-occurring species can exhibit very different interactions among
dispersal, environmental characteristics, and physiological tolerances, calling for increased
attention to species-specific dynamics in determining regional vegetation responses to
anthropogenic perturbations.
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INTRODUCTION

It has long been recognized that the structure,

composition, and distribution of plant communities is

highly correlated with the physical environment, at scales

from global (Walter 1973, 2002, Archibold 1995) to

regional (Whittaker 1956, 1960) to local (Cowles 1899).

Yet, the development of a quantitative understanding of

these relationships has remained a significant challenge,

because they arise from complex and often nonlinear

interactions between species-specific ecophysiological

traits, competitive and facilitative interactions within

and among species, and large-scale population processes

including dispersal limitation. Moreover, all of these

processes operate within heterogeneous landscapes that

are subject to natural disturbance and anthropogenic

habitat fragmentation (Crawley 1997). And yet a

quantitative understanding of these processes is needed

for predicting vegetation responses to climate change and

other natural and anthropogenic perturbations (Pacala

and Hurtt 1993, Lawton 2000).

A common approach to studying environmental

forcing in plant communities is regression analysis of

the occurrence or abundance of focal species vs. abiotic

variables (e.g., Austin et al. 1990, Franklin 1998,

Leathwick and Whitehead 2001, Heegaard 2002). We

refer to this as ‘‘gradient analysis’’; for climate-specific
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applications, it has also been referred to as ‘‘bioclimate

envelope’’ or ‘‘climate envelope’’ modeling (Davis et al.

1998a, b, Pearson and Dawson 2003). Gradient analysis

has successfully reproduced observed distributions of

species (e.g., Franklin 1998), and it has been used for

predicting how distributions might be altered by climate

change (e.g., Iverson and Prasad 1998). However,

gradient analysis is not well suited for inferring

underlying ecological processes, or for predicting future

patterns, because it lacks population dynamic processes

(Pacala and Hurtt 1993, Davis et al. 1998a, b). Hence,

gradient analysis inherently assumes that current species-

environment relationships will hold in the future, and it

cannot predict the time course of responses to perturba-

tions. Moreover, while changes in physical and climatic

conditions may be critical in determining the distribu-

tions and abundance of some plant species in the future,

other factors are likely to be at least as important,

including habitat loss, fragmentation, and changes in

disturbance rates (Primack 1998, Davies et al. 2001).

These issues call for quantitative methods that

explicitly link population dynamics with environmental

forcing (Pacala and Hurtt 1993, Lawton 2000). One

direction is the development of individual-based models

rich in mechanistic functions describing growth, mortal-

ity, competition, and dispersal processes (e.g., Desanker

1996, Pacala et al. 1996). Although attractive because of

their attention to biological detail, such models are

difficult to implement because they are computationally

demanding, require large quantities of data collected at a

variety of scales, and are too complex to be parameter-

ized top-down from survey data on the abundance and

distribution of species. There are promising mathemat-

ical techniques for estimating the aggregate behavior of

individual-based models, which reduces computing time

andmay enable top-down parameterization (Bolker et al.

2000, Iwasa 2000, Law and Dieckmann 2000, Moorcroft

et al. 2001, Law et al. 2003), but these techniques remain

challenging to implement.

Another potential route, which lies between the

extremes of gradient analysis and individual-based

models, is metapopulation modeling (Hanski and Gilpin

1997, Hanski and Gaggiotti 2004). The classic Levins

metapopulation model (Levins 1969) reduces the re-

gional population of a species to a collection of patches,

each of which is occupied or empty. Patch occupancy,

and thus the frequency and distribution of species, arises

from a balance between local extinctions and coloniza-

tions (see Hanski 1997). Models of this type are known

as stochastic patch occupancy models (SPOM; Hanski

and Simberloff 1997, Etienne et al. 2004). Importantly,

SPOMs exclude all within-patch dynamics, and so are

quick to implement and include a much smaller set of

parameters than individual-based models. Hence,

SPOMs can be parameterized from survey data and

implemented at large spatial scales (Etienne et al. 2004).

In addition, the SPOM framework is especially well

suited for addressing the consequences of habitat loss,

fragmentation, and changes in disturbance rates (e.g.,

Hanski and Simberloff 1997). However, the use of

metapopulation modeling is obviously only suited to

populations that appear to be subject to a metapopu-

lation structure (see Freckleton and Watkinson 2002).

However, despite their simplicity and applicability to

regional-scale population dynamics, the simple SPOMs

that form the core of applied metapopulation modeling

in animal populations have apparently not been

implemented for studying vegetation dynamics (re-

viewed by Etienne et al. 2004). Also, although they

have great potential for assessing species–environment

relationships and for predicting plant population

responses to changes in abiotic factors, we are not

aware of any studies that directly incorporate continu-

ous variation in environmental forcing (drought, tem-

perature, altitude, and so on) into the SPOM

framework. Rather, in common with metapopulation

ecology in general, work on SPOMs has tended to

assume a homogenous environment, with fundamental

rates of local extinction, colonization and dispersal

being constant across the patch network (though see

theoretical treatments by Hiebeler 2000 and Lopez and

Pfister 2001). And yet, site-specific variation in vital

rates can be incorporated into SPOMs readily, as

demonstrated by studies that have included extinction

and colonization rates that depend on patch size (e.g.,

Hanski 1997, Vos et al. 2000).

Here, we extend the theoretical and empirical

framework that has been established for SPOMs (see

Etienne et al. 2004) by making the key population

processes—establishment and disturbance—functions of

local physical and climatic conditions. This approach

gives a parsimonious modeling framework that is

capable of capturing interactions between environmen-

tal forcing and population dynamics; provides a means

for identifying key biotic–abiotic linkages; and yields a

framework for predicting potential effects of environ-

mental change on vegetation dynamics, including, for

example, climate change, habitat loss, and fragmenta-

tion. We show how the SPOM can be parameterized

from survey data, and then used to address basic

ecological questions, and to provide estimates for the

sensitivities of vegetation to changes in climate, distur-

bance regimes, and land use.

We apply the SPOM to three co-occurring oak species

(Quercus faginea Lam., Q. ilex L. ssp. ballota, and Q.

coccifera L.) that are a major component of woodlands

in central Spain and other Mediterranean ecosystems

(Grove and Rackham 2001) and for which excellent

survey data are available (Inventario Forestal Nacional

1995). The distribution and abundance of these oak

species are likely to be governed by complex metapop-

ulation–environment interactions because (1) the dom-

inant plant community types are highly fragmented (de

Miguel 1999, Arianoutsou and Papanastasis 2004; and

see Fig. 1b, c); (2) stand-leveling disturbances, princi-

pally fire, are common (Vázquez et al. 2002); (3) the
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distribution of these species is thought to depend on the

ability of seedlings to establish under different environ-

mental conditions (Rey Benayas 1998, Retana et al.

1999); and (4) the region is characterized by pronounced

small-scale heterogeneity in physiography, soils, and

climate (e.g., Gavilán and Fernández-González 1997).

An important process affecting these woodlands is

large-scale dispersal, which is primarily due to acorn

movement and caching by the European Jay (Garrulus

glandarius), whose range includes the entire Iberian

Peninsula (see Plate 1). Jays move seeds over sufficient

distances to colonize empty patches, although dispersal

is nevertheless local at the multi-kilometer scales

examined here (Gomez 2003). Also, the jays preferen-

tially cache acorns in habitats suitable for seedling

establishment (Gomez 2003). Directed dispersal of this

kind is expected to have fundamental effects on the

response of metapopulations to changes in habitat cover

and disturbance (e.g., Etienne 2000, Purves and Dushoff

2005).

We use simulations of the SPOM to explore the

sensitivity of the distribution and frequency of the oak

species to changes in some key biotic and abiotic factors.

First, we evaluate the contribution of two different

aspects of jay-mediated seed dispersal (spatially local, and

directed toward suitable habitat) to the current frequen-

cies and distributions. Second, climate models predict

that Spanish summers will become drier over the next

century (Intergovernmental Panel on Climate Change

2001: Figs. 3–5), sowe investigate sensitivity to changes in

drought length. Third, fire frequency could change in the

future over and above any changes in climate, although

the direction of change is uncertain due to the influence of

human-induced ignitions, fire management, and land-use

policy (Vázquez et al. 2002). Thus, we implement

simulations under different disturbance frequencies.

Finally, this region is composed of natural and semi-

natural landscapes interspersed with agricultural and

urban areas, so the impacts of changes in land use on the

region’s vegetation dynamics are of particular interest

(Blondel and Aronson 1995, Gomez-Limón and Fernan-

dez 1999). Therefore, we conduct simulations under

different levels of habitat cover and fragmentation.

STUDY REGION AND SPECIES

The study area consists of the provinces of Madrid

and Castile La-Mancha, located in the center of the

Iberian Peninsula (Fig. 1). The region spans 38.08 N to

41.38 N and 0.88 W to 5.58 W, encompassing a large

altitudinal gradient (300–2000 m). The climate in this

area is quite variable, with mean annual precipitation

ranging from 300 to 1900 mm, warm summers (average

July temperature: 248 to 368C) and fairly cold winters

(average January temperature: �58 to 28C). The land-

scape is a mosaic of seminatural forests, savannas,

shrublands, grasslands, intensive agricultural fields, and

urban areas. The Second Spanish Forest Inventory

(Inventario Forestal Nacional 1995) sampled this region

from a network of survey plots superimposed onto

wooded areas with a density of approximately one plot

per 4 km2 (Villanueva 1993), giving a total of 12 047

plots. Each plot was censused for several attributes,

including the presence or absence of several species of

trees and shrubs, stem diameter data for some tree

species, slope, aspect, and soil conditions. For the

purpose of this study, we extracted the presence–absence

data for three Quercus species (where presence or

absence means presence or absence of a living tree or

shrub of the species in a 25 m radius survey plot).

FIG. 1. (a) Map of the Iberian Peninsula, showing Portugal
(unshaded) and Spain (light gray), including the study region
(Madrid and Castile La-Mancha, dark gray). (b) Distribution
of the 12 047 forest inventory plots within the study region. The
plot density follows the density of forest, woodland, and
shrubland. (c) Distribution of inventory plots (gray), and
inventory plots in which Quercus faginea was recorded as
present (black), within the 50 3 50 km region outlined in (b).
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Inventario Forestal Nacional data from repeated

surveys were not available at time of publication.

We focus on three oak species common in this region:

Quercus faginea Lam. (Portuguese oak), Q. ilex L. spp.

ballota (holm-oak), and Q. coccifera L (prickly-oak).

Although these oaks are codominant in this region and

co-occur in many areas, they exhibit quite different life

history and ecophysiological strategies (Villar-Salvador

et al. 1997, Fotelli et al. 2000, Grove and Rackham

2001, Corcuera et al. 2002, Valladares et al. 2002, Rey

Benayas et al. 2005). Quercus faginea is a moderate-

sprouting deciduous tree that is common in mesic

calcareous locations. Conversely, Q. coccifera and Q.

ilex are sclerophyllous evergreen Mediterranean special-

ists that are well-adapted to dry habitats, and both can

resprout vigorously after cutting or browsing (Grove

and Rackham 2001). Genets of all three species tend to

be killed by fire (López-Soria and Castell 1992). In this

region, Q. ilex grows as a shrub or tree, but Q. coccifera

is found only as a shrub.

MODEL DESCRIPTION

The SPOM that we developed consists of a grid of

sites i¼ 1, 2, . . . , N covering the study region. To match

the spatial resolution of the inventory data, all model

sites were set to 2 3 2 km. Each site i is classified as

suitable or unsuitable, where suitable means that the

species can occur at the site and unsuitable means that

they cannot (e.g., cropland, urban). The Inventario

Forestal Nacional survey plots were only placed in

locations with cover of woody plants, so we used the

spatial pattern of the survey plots to determine the

suitability of each site i. That is, all model sites i

occurring within 2.0 km of a survey plot q were classified

as suitable, yielding a total of 11 039 suitable sites and

11 901 unsuitable sites. The grid of model sites and the

network of survey plots exhibit a nearly one-to-one

correspondence, but the overlap is not perfect because

some survey plots are irregularly spaced.

There are several substantial areas of contiguous

suitable habitat, and it is also common to find a group

of two or more suitable sites nested within unsuitable

habitat (see Fig. 1b, c). Within each of these contiguous

areas of suitable habitat, the division into discrete patches

is arbitrary. Therefore, the selection of patches in our

model differs from previous SPOMs, which have been

applied to habitats that are fundamentally discrete, such

as ponds (Vos et al. 2000) or small clumps of host plants

for insects (Hanski 1994). The SPOM that we developed

for the Spanish oak system is described in detail below,

and Table 1 summarizes the notation used in the model.

Disturbance and colonization

At any time t, each site i is either occupied by species j

(i.e., Zj,i(t)¼ 1) or unoccupied by species j (i.e., Zj,i(t)¼
0). Unsuitable sites are never occupied. By definition, the

SPOM does not include any representation of within-site

population dynamics. Therefore the state of the

metapopulation at time t is given by the vector Zj(t).

The metapopulation dynamics are driven by two events:

local extinction and colonization of suitable sites. At

time t, and for each model site i, we calculate a

probability that it will be disturbed during this iteration,

denoted by /i (yr
�1). When site i is disturbed, all species

present are set to absent (Zj,i(t)¼0 for all j). Thus, we do

not consider differential survival, or resprouting ability,

but the available evidence suggest that fires tend to kill

genets of all three species (López-Soria and Castell

1992). The value of /i varies from site to site because of

spatial variation in fire frequency in this region (see

Appendix C). We also calculate a probability that

TABLE 1. Explanation of notation used in the stochastic patch occupancy model (SPOM) and in parameter estimation.

Symbol Description

j, i, q, t Indices for species ( j), model site (i), survey plot (q), time (t)
Zj,i/q Presence (1) or absence (0) of species j, in model site i (Zj,i) or observed in survey

plot q (Zobs
j;q )

Zj, Zobs
j Vectors of all Zj,i and Zobs

j;q for all sites and/or survey plots
q̂(i), ı̂(q) Nearest q to i, and nearest i to q, respectively

SPOM

/i, aj,i Annual probability of extinction (for site i); and probability of seed establishment
(for a seed of species j at site i)

Sj,i(t), s( j, i, i
0) Seed rain (yr�1): total into site i, and from site i0 to i, respectively

xj Total seed output (yr�1) from a patch occupied by species j
g(i, i0) Dispersal kernel for movement of seeds from i0 to i
a, b Parameters for local dispersal kernel (Eq. 4)
l1, j � � � l3, j, r1, j � � � r3, j, j3, j Parameters defining the relationship between aj,i and physical variables at site i,

V1, j(i) � � � V3, j(i)

Parameter estimation

lfZobs
j j hg Log-likelihood of data Zobs

j given parameter set h
Pj,q,h, Pj,i,h Probability that species j will be found in plot q or site i, respectively
ffh jZobs

j g Posterior probability of parameter set h given Zobs
j

ffhg Prior probability of parameter set h
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species j will colonize site i during this iteration, equal to

1 � ð1� aj;iÞSj;iðtÞ .

These rules define a set of transition probabilities for

each site i, which together constitute a complete

description of the model:

P½zj;iðt þ 1Þjzj;iðtÞ�

¼

/i if zj;iðtÞ ¼ 1 and zj;iðt þ 1Þ ¼ 0

1� /i if zj;iðtÞ ¼ 1 and zj;iðt þ 1Þ ¼ 1

1� ð1� aj;iÞSj;iðtÞ if zj;iðtÞ ¼ 0 and zj;iðt þ 1Þ ¼ 1

ð1� aj;iÞSj;iðtÞ if zj;iðtÞ ¼ 0 and zj;iðt þ 1Þ ¼ 0

8>><
>>:

ð1Þ

where Sj,i(t) is the seed rain, i.e., the number of seeds of

species j arriving at site i (yr�1); and aj,i is the probability
that a seed of species j arriving at site i will become

established as an adult (Eq. 1 refers to suitable sites i

only; unsuitable sites are set to zero for all t). Eq. 1 is

derived by assuming that the probability that a new

population takes hold at site i is equal to one minus the

probability that none of the arriving seeds become

established. Note that establishment by species j is not

affected by the presence or absence of species other than

j, and multiple species can coexist within a site.

Seed dispersal

The seed rain of species j at site i is calculated as the

sum of the seed arriving from each occupied site i0, s( j, i,

i0) where i0 6¼ i:

Sj;iðtÞ ¼
X

i 02 Zj;i 0 ðtÞ¼1f g
sð j; i; i 0Þ: ð2Þ

The set fZj,i0(t)¼ 1g contains all suitable sites i occupied
by species j at time t, and

sð j; i; i 0Þ ¼ xj � gði; i 0Þ ð3Þ

where xj is the seed output of an extant population of

species j (number of seeds produced per year per patch).

The fraction of seeds from site i0 that land in site i is

described by the dispersal kernel g(i, i0), which we

assume is the same for all three species.

Local vs. global dispersal.—We explore two dispersal

kernels that differ with respect to the distances over

which seeds move. The first gives local dispersal, where

seeds are more likely to arrive at nearby sites, and

follows the generalized exponential function

gði; i 0Þ ¼ exp½�a � ðdi;i 0Þb�X
i2H

exp½�a � ðdi;i 0Þb�
ð4Þ

where di,i0 is the Euclidean distance between the centers

of sites i and i0 (km); H is the set of all sites that can

potentially receive seeds from site i0; and parameters a

and b set the rate at which seed dispersal declines with

distance and the curvature of this decline, respectively.

An alternative formulation gives global dispersal,

where seeds are distributed to near and far sites with

equal probability:

gði; i 0Þ ¼ 1

jHj ð5Þ

where jHj is the size of set H (i.e., number of sites

receiving seeds). There are a finite number of model

sites, thus the two dispersal kernels are probability mass

functions and Ri g(i, i
0)¼ 1.

Directed vs. random dispersal.—The denominators in

Eqs. 4 and 5 contain the set H, and the definition of H

determines whether dispersal is random or directed. To

reflect the seed caching behavior of the European Jay,

we assume that seeds are moved toward suitable habitat,

and we refer to this as directed dispersal. ‘‘Directed’’

here implies that the seeds are moved nonrandomly with

respect to patch type, which in this case refers to suitable

(woodland) or not. In this case, the fraction of seeds that

site i receives from site i0 necessarily increases as the

cover of suitable habitat decreases, because there are

fewer patches for the jays to visit. The alternative, null

model is random dispersal; in this case, seeds are

distributed to both suitable and unsuitable habitat with

equal probability, thus the fraction of seeds that arrive

at site i from i0 is independent of the number of suitable

sites. Hence, H either contains all suitable sites (directed

dispersal) or all suitable and unsuitable sites (random

dispersal).

In total, Eqs. 3–5 give four dispersal modes: local

directed (LD), global directed (GD), local random (LR),

and global random (GR), where LD dispersal best

describes the observations of jay-mediated seed dispersal

(Gomez 2003).

Seed establishment

There are several different ways to incorporate

environmental forcing into a SPOM model. We have

chosen to restrict the influence of the environment to fire

frequency (/i) and seed establishment (ai, j). Here, we

model Yj,i¼ logit(ai, j) as a function of three site-specific

physical and/or climatic variables, V1, j(i) � � � V3, j(i), such

that

aj;i ¼ 1=½1þ expð�Yj;iÞ� ð6aÞ

Yj;i ¼ jj þ r1; j½V1; jðiÞ � l1; j�2 þ r2; j½V2; jðiÞ � l2; j�2

þ r3; j½V3; jðiÞ � l3; j�2: ð6bÞ

Eq. 6 provides for a very flexible relationship between the

predictor variables V1, j(i) � � � V3, j(i) and the probability

of seed establishment. The parameter jj sets the value of
aj,iwhenV1, j(i)¼l1, j,V2, j(i)¼l2, j, andV3, j(i)¼l3, j. The
parameters r1, j � � � r3, j set the direction and sensitivity of

aj,i to variation inV1, j(i) � � �V3, j(i) away from l1, j � � � l3, j.
When r1, j � � � r3, j are negative, aj,i takes its maximum

when V1, j(i) ¼ l1, j, V2, j(i) ¼ l2, j, and V3, j(i) ¼ l3, j, and
thus the parameters l1, j � � � l3, j essentially describe the

environmental conditions for which establishment is
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maximal. We also allowed positive r values in the

parameter estimation, but most r values were estimated

to be significantly less than zero, and so this interpreta-

tion of Eq. 6 holds for most species–variable combina-

tions. Importantly, we also allowed lx, j to lie outside the

observed range of Vx, j. In this case, aj,i is either

monotonically decreasing or increasing over the Vx, j

range, so Eq. 6 does not constrain the relationship

between physical variables and seed establishment to
have internal maxima or minima.

The set of predictor variables V1, j(i) � � � V3, j(i) for

each species j was selected according to a preliminary
gradient analysis that identified the three factors most

strongly correlated with the observed presence/absence

of each species (Appendix A and Table 3). The variables

selected differed between the species (see Table 3).

Drought length (number of months when PET exceeds

precipitation) was included for all three species. In

addition, the deciduous Q. faginea depended on

seasonality (CV) of precipitation, and annual average

potential evapotranspiration (PET) which is a combined

measure of temperature and humidity (high PET

signifies high temperatures and low humidity). The

evergreens depended on altitude and PET (Q. ilex), and
on altitude and annual mean temperature (Q. coccifera).

For each site and species the values of V1, j(i) � � � V3, j(i)

were generated by spatial interpolation of data from

weather stations (Appendix A), yielding values for each
survey plot q. To set the environmental conditions at the

model sites, we used the same rules as for assigning

observed presence or absence and thus

Vx;i ¼ Vx;q̂ðiÞ ð7Þ

where q̂(i) is the nearest survey plot to model site i.

PARAMETER ESTIMATION

There are four groups of parameters that reflect

various components of the SPOM model, including

disturbance, dispersal characteristics, seed rain, and seed

establishment. We use fixed values, based on the

literature and supplementary data, for the disturbance

and dispersal parameters. The seed output and estab-

lishment parameters are estimated from the survey data

using a Bayesian approach.

Fixed parameters

The most important stochastic disturbance in the

study region is wildfires, which, in the current landscape,

have an average return interval of 10–100 years (Naveh

1990). We used a statistical model to predict fire

frequency for each location from the drought length,

annual precipitation, and altitude at that location (see

Appendix C). This model gives the disturbance proba-

bility /i for each site i based on the conditions at site i.

The fire model was parameterized separately from

additional sources of data (see Appendix C), and its

parameters were fixed upon incorporating it into the
SPOM model. The parameter values for the local

dispersal kernel were also fixed (a¼ 0.11, b¼ 0.60), and

were chosen to reproduce the jay-mediated acorn

movements documented by Gomez (2003). Other types

of dispersal are likely to operate within sites (Bossema

1979), but these are not captured here because the SPOM

describes between patch dynamics only. The seed

movements reported by Gomez (2003) were typically

less than 500 m. Hence, in the SPOM, local dispersal

results in seeds being primarily moved between neigh-

boring cells. However, the parameter values and the

functional form of the local dispersal kernel yield a ‘‘long

tail,’’ thus some acorn movement occurs over several to

tens of kilometers.

Free parameters

The SPOM for species j contains eight free parameters:

jj, l1, j � � � l3, j, r1, j � � � r3, j, and xj. These parameters are

estimated by a Bayesian analysis of the Inventario

Forestal Nacional presence–absence data. A necessary

part of the analysis is an analytical description of the

likelihood function, which quantifies the likelihood of the

data, conditional on the model constraints and parame-

ters. To implement the analysis efficiently, we made some

key simplifying assumptions, generating a pseudo-likeli-

hood function that can be calculated rapidly, but which is

an approximation to the true likelihood.

Simplifying assumptions.—We denote the observed

presence/absence data for species j in survey plot q as

Zobs
j;q . The total data set for species j is the vector Zobs

j of

12 047 ones and zeros for presence/absence in each

survey plot. Conditional on the SPOM assumptions and

parameter set h¼ (/, a, b, c, jj, l1, j � � � l3, j, r1, j � � � r3, j,

xj), each Zobs
j;q is assumed to arise from an independent

Bernoulli process. Thus, the log-likelihood function for

Zobs
j is

‘ Zobs
j jh

n o
¼
X

q

½Zobs
j;q lnðPj;q;hÞ

þð1� Zobs
j;q Þ lnð1� Pj;q;h Þ

�
ð8Þ

where Pj,q,h is the probability that species j will be found

in plot q, or equivalently, the fraction of time that plot q

is expected to be occupied by species j (see Hanski 1994,

Etienne et al. 2004). The most direct way to estimate the

Pj,q,h is to implement the SPOM with parameter set h,
and run the model for a sufficient number of iterations

to reach equilibrium and give an accurate assessment of

Pj,q,h. However, a new model simulation must be

implemented for each new h, and the necessary

computing time prohibited this approach in this study.

Instead, we calculate Pj,i,h by noting that, at equilibrium,

the probability of extinction is equal to the probability

of colonization:

/iPj;i;h ¼ ½1� ð1� aj;iÞSj;i �ð1� Pj;i;hÞ ð9Þ

where Sj;i is the average annual seed rain of species j into

model site i, and the solution for Pj,i,h is
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Pj;i;h ¼ 1þ /i

1� ð1� aj;iÞSj;i

" #�1

: ð10Þ

The expected probabilities for each survey site are

obtained by assuming

Pj;q;h ¼ Pj;ı̂ðqÞ;h ð11Þ

where ı̂(q) is the nearest model site i to survey plot q.

Here, a problem arises because Sj,i and Pj,i,h are both

functions of each other. There is no exact solution to this

problem. Methods are becoming available to deal with

this issue, but these require repeated surveys, the use of

repeated model simulations, or the use of latent

variables; the latter two options would make the analysis

much more complex than the one presented here

(O’Hara et al. 2002, ter Braak and Etienne 2003, Etienne

et al. 2004). In this study, surveys were not repeated and

extra simulations were unfeasible. Instead, we reduce the

computational requirements by initializing the SPOM

with observed presence/absence data:

Z
ðobsÞ
j;i ¼ Z

ðobsÞ
j;q̂ðiÞ : ð12Þ

From this pattern of presence/absences in the model, we

calculate Sj,i using Eqs. 2–5, which we denote S
ðobsÞ
j;i .

Finally we set

Sj;i ¼ S
ðobsÞ
j;i : ð13Þ

Thus, the average seed rain into each model site is

assumed to be equal to the seed rain calculated from the

model when initialized with the observed data. Because

of this simplification, this method yields an estimate of

the log-likelihood, not the true value. If the species

distributions are close to their equilibrium state, this

approach is not thought to introduce significant errors

(Hanksi 1994), a view which is supported by the close fit

to observations obtained here.

Bayesian analysis.—We implemented a Bayesian

analysis because it conveniently gives point estimates

for the free parameters, and it explicitly quantifies

parameter uncertainty. Although both Bayesian (e.g.,

Gelman et al. 2004) and maximum likelihood (ML)

methods (e.g., Hilborn and Mangel 1997) share the same

likelihood function and often yield similar results, the

Bayesian approach differs from ML in a few key points.

Most important, the free parameters in h are treated as

random quantities, so uncertainty in these parameters

can be directly incorporated into simulation results. The

product of a Bayesian analysis is a joint posterior

distribution for the parameters given the data f (hj j Zobs
j ),

and this posterior is proportional to the likelihood times

the prior such that f (hj j Zobs
j } exp[‘(Zobs

j j hj)] � f (hj)
(e.g., Gelman et al. 2004). Thus, the priors allow the

incorporation of previous information about likely

parameter values, but they can also be chosen to be

non-informative, as here (i.e., we chose flat priors such

that f (hj) } C, where C is a constant). We subscript h by j

to explicitly indicate that each species is associated with

its own set of parameter values.

The SPOM returns a likelihood function that is highly

nonlinear, and analytical solutions for the joint posterior

density cannot be derived easily. Therefore, we imple-

mented a Metropolis-Hastings (M-H) Markov chain

Monte Carlo (e.g., Chib and Greenberg 1995, Robert

and Casella 1999) numerical algorithm for sampling

from f (hj j Zobs
j ). From these samples, we can calculate

measures of parameter centrality (e.g., mean, median,

mode) and spread (e.g., credible intervals, which are

much like confidence intervals). To define f (hj) we note

that l1, j � � � l3, j can take any value between 6‘, but the

other parameters (r1, j � � � r3, j, jj, xj) are all positive

valued. Thus, we chose flat priors for l1, j � � � l3, j, ln(r1, j)

� � � ln(r3, j), ln(jj), and ln(xj).

Separate M-H simulations were conducted for each of

the three oak species and for each dispersal mode (i.e.,

LD, GD, LR, GR). For each of these 12 SPOMs, an

initial burn-in of 10 000 iterations was required to

eliminate the effects of starting conditions. After the

M-H samples converged to the posterior distribution, an

additional 10 000 iterations were run and every 50th

parameter set was stored, providing an independent

sample of 200 from f (hj j Zobs
j ). We use these samples to

conduct simulation experiments with the SPOM, there-

by accounting for parameter uncertainty, preserving the

covariance between parameters.

MODEL SIMULATIONS AND ANALYSIS

To assess uncertainty in model predictions and to

estimate the effects of dispersal, we conducted a Monte

Carlo simulation using the SPOM. A comparison of the

four dispersal modes indicated that the local directed

(LD) dispersal mode gave a much better fit to the survey

data than did the other dispersal modes (see Table 2).

Therefore, for each of m ¼ 1, ... , 40 Monte Carlo

simulations, h was drawn at random from the empirical

posterior density generated for LD dispersal. For each

parameter combination, we ran separate simulations for

each of the four dispersal modes. Thus, parameters

governing seed output and seed establishment were held

the same regardless of dispersal mode, allowing us to

infer the direct effects of dispersal mode alone on the

distribution of the three oak species.

Each of the 40 model simulations began with an initial

random state that was generated by assuming a 1%

chance that each site is occupied. The SPOM for each

simulation was run for 3000 iterations to ensure that

equilibrium abundances and spatial distributions were

reached. Within a simulation, the parameters were held

constant for all iterations. This resulted in equilibrium

species distributions that were comparable to observed

patterns. We also ran simulations beginning with a 50%

and 90% chance of occupancy. This had no measurable

effect on the model equilibria, indicating that the

equilibrium was not dependent on starting conditions.

For each simulation m and species j, we recorded the
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average species frequency Fj,m at the end of the 3000

model iterations:

Fj;m ¼ ð1=nÞ
X
i2R

Zj;i ð14Þ

where the set R contains all suitable sites i, and n ¼
11 039 is the total number of suitable sites. The values of

Fj,m for each dispersal mode are denoted by FLD
j;m � � � FGR

j;m.

We also recorded the distribution as a function of

altitude Fj,m,alt and drought length Fj,m,dl:

Fj;m;altðxÞ ¼ ½1=nðxÞ�
X

i2RðxÞ
Zj;i ð15Þ

Fj;m;dlðwÞ ¼ ½1=nðwÞ�
X

i2RðwÞ
Zj;i ð16Þ

where x refers to altitude (m) and w to drought length

(months); the sets R(x) and R(w) contain all suitable

sites i located with altitude between x� 50 and xþ 50 m

or with drought length between w � 0.25 and w þ 0.25

months, respectively; and n(x) and n(w) are the numbers

of sites in R(x) and R(w). The values specific to each

dispersal mode are denoted by FLD
j;m;alt(x) � � � FGR

j;m;alt(x),

and FLD
j;m;dl(w) � � � FGR

j;m;dl(w).

To calculate the effect of dispersal mode on the mean

frequencies Fj and distributions Fj,alt and Fj,dl, we

compared the values given by GD and LR dispersal

with those given by LD dispersal for each m:

DFy
j;m ¼ FLD

j;m � Fy
j;m ð17Þ

DFy
j;m;bðxÞ ¼ FLD

j;m;bðxÞ � Fy
j;m;bðxÞ ð18Þ

where DFy
j;m is the difference in the average frequency

given by LD dispersal mode relative to dispersal mode y

(¼LR, GD, or GR). Similarly, DFy
j;m;b(x) is the difference

in frequencies at altitude or drought length x (b¼alt or b

¼ dl, respectively). This pairwise procedure was con-

ducted to standardize for the effects of parameter

uncertainty (e.g., comparing frequencies after they have

been averaged across all m simulations would have

underestimated the significance of the effect of dispersal

mode; see Fig. 2, a vs. b). The effect of local (or directed)

dispersal is given by the DF values comparing simula-

tions with and without this effect. For example, LD

minus GD measures the effect of local dispersal, and LD

minus LR measures the effect of directed dispersal.

Observed values for Fj, Fj,m,alt, and Fj,m,dl were also

calculated from the survey data.

Spatial statistics

Spatial structure in the observed and simulated

distributions was quantified using a modification of the

spatial covariance functions given in Purves and Law

(2002). These statistics give a value for the auto-

covariance of species j at a spatial lag r, Cj(r), which

we compare to the expected correlation under spatial

randomness EfCj(r)g. The ratio of these two quantities

gives a dimensionless measure of departure from spatial

randomness Xj(r) (Condit et al. 2000). To correct for

apparent differences in spatial structure due to differ-

ences in average frequency, we divided Xj(r) by the

maximum possible value given the current frequency, to

give XðnÞj (r):

XðnÞj ðrÞ ¼ ½XjðrÞ � 1�=ðF2
j � 1Þ ð19Þ

where Fj is the fraction of suitable sites occupied by

species j (observed, or in a given model simulation). A

value of XðnÞj (r) . 0 indicates aggregation of species j at

spatial lag r, XðnÞj (r) , 0 indicates segregation, and

XðnÞj (r) ffi 0 indicates spatial randomness. Pairwise

comparisons of X from model simulations with different

dispersal modes, similar to those described in Eqs. 17–

18, were used to calculate the effect of dispersal on

spatial structure. The X statistic was used because it is

simpler than some alternatives (e.g., semivariance,

Ripley’s k [Ripley 1981]), but it is likely to have yielded

similar results to them. The estimates of X do not

depend on the arrangement of survey plots.

Perturbation experiments

We also evaluated the sensitivity of the regional

population abundance of the species to altered drought

length, disturbance rate, and habitat cover (Appendix

B). All three of these features were varied relative to

their observed values. Drought length was manipulated

by applying the following transformation:

Vdl;i ¼ Vdl;q̂ðiÞ þ Ddl ð20Þ

where Vdl,i is constrained to lie between 0 and 12

TABLE 2. Model fits for the stochastic patch occupancy model
(SPOM) for three Quercus species under each of four
dispersal modes: local directed (LD), global directed (GD),
local random (LR), and global random (GR).

Species

Dispersal mode

LD LR GD GR

Q. faginea 8739.7 8895.8 11 824.9 11 824.2
Q. ilex 9538.7 12 420.2 12 089.6 13 612.4
Q. coccifera 5419.9 5547.0 6543.0 6414.3

Notes: Table entries are D (deviance) values. The mean
posterior deviance (D), is calculated for each model by
averaging the log-likelihood over all j ¼ 1, ... , 200 posterior
samples of h, such that D¼�23 (1/200) R200

k¼1 ‘ðZobs
j jh

ðkÞ
j Þ. Lower

D values indicate a superior model fit (Gelman et al. 2004). This
index is appropriate for model comparison here because the
dimensionality of the parameter set is the same for each model
(for models with unequal numbers of parameters, see Spiegel-
halter et al. [2002]). For each species, the model with the best fit
is shown in boldface. The smallest difference between the best
model and the next best model is 114 units (Q. faginea, LD vs.
LR dispersal). This difference corresponds to ;57 log-
likelihood units, which is a highly significant difference in fit,
given that the number of parameters is the same for all models
(Hilborn and Mangel 1997). The differences for Q. faginea and
Q. ilex are larger than 114 units.
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months, and the change in drought length was varied

between Ddl¼�4 toþ5 months. Disturbance rate /i was

manipulated by applying the transformation

hi ¼ Dfirehq̂ðiÞ ð21Þ

subject to the constraint 0 , hi , 1; with Dfire¼ 1/3, 2/3,

1, 2, or 3. For each perturbation experiment, 10

simulations were implemented, with parameters drawn

from the posterior density each time.

Habitat cover, which refers to the fraction of all

model sites i designated as suitable, was varied from 5%

to 95%, with the observed value, estimated from survey

plots, being 48%. The habitat cover changes were

implemented using two different methods, both of which

began with the observed spatial arrangement of suitable

sites (Appendix B: Fig. B1). The first method added or

removed sites at random until the target cover was

obtained. This tended to give a highly fragmented

pattern of suitable habitat. The second method made the

addition or removal of sites much more likely at

suitable–unsuitable interfaces. This tended to give a

highly aggregated pattern of suitable habitat, which

more accurately reflects the observed pattern (Fig. 1).

RESULTS

Fits to survey data

Model comparisons.—We compared how well the

SPOM with the four different dispersal modes fit the

survey data for each Quercus species (Table 2). For all

three species, local dispersal modes (LD and LR) gave a

much better fit to the data than global dispersal modes

(GD and GR; Table 2). And overall, local directed (LD)

dispersal was far superior to the other three models

(Table 2). Because the LD model provided the best fit to

the survey data and because LD dispersal is most

consistent with field observations of jay-mediated acorn

movements (Gomez 2003), we consider the parameter

estimates for the SPOM with LD dispersal to be those

that correspond to reality most closely. Thus, we use the

posterior distributions of the LD parameters in all

simulation experiments, and parameter estimates gener-

ated using other dispersal modes are not considered

further.

Parameter estimates for LD model.—Parameter esti-

mates for the SPOM with LD dispersal are given in

Table 3 for the three oak species. In general, the

parameters were well constrained by the data (Table 3),

as indicated by fairly narrow credible intervals. Across

the three species, estimated seed output ranged from

approximately 45 to 1900 seeds per occupied site (see x;
Table 3). These values may appear small given the size of

FIG. 2. Mean frequency of three Quercus species. (a)
Observed frequency and model simulations with different
dispersal modes: local directed (LD), global directed (GD),
local random (LR), and global random (GR). Simulations
differed in dispersal mode only: all simulations used parameters
estimated using LD dispersal, so the apparent superior fit of LR
dispersal is not relevant (for all three species, the parameters
generated using LR dispersal lead to an inferior fit for all three
species; Table 2). Error bars are envelopes containing 95% of
the simulation results. Variation in model output reflects both

‹
inherent model stochasticity and parameter uncertainty. (b)
Effect of dispersal mode on mean frequency, estimated by
calculating pairwise differences between simulations with
identical parameter values but different dispersal modes (see
Methods).
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the patches. For example 527 seeds per 4 km2, which is

the upper 95th percentile of x value for Q. ilex, implies

an output of 0.00013 seeds�m�2�yr�1. However, the

SPOM model only follows seeds that enter into inter-

patch movements, whereas the great majority of seeds

are expected to remain within their native patch. Seed

output was estimated to be in the order Q. faginea , Q.

ilex � Q. coccifera, with the differences being statisti-

cally significant (Table 3, credible intervals for x for one

species do not contain the mean x for other species).

However, the maximum probability of seed establish-

ment, which is given by exp(j), differed substantially in

the opposite order: Q. coccifera , Q. ilex , Q. faginea

(Table 3). A measure of maximum effective fecundity is

given by the product x exp(j), which varied in the order

Q. coccifera ’ Q. faginea , Q. ilex (see Table 3).

The parameter estimates also suggest that the three

species are segregated along environmental gradients

with respect to requirements for seedling establishment.

For example, the drought length that maximizes seed

establishment is significantly greater for Q. coccifera

than for Q. faginea or Q. ilex, as indicated by the fact

that the l1 credible intervals for Q. coccifera do not

contain the posterior mean of the other species, and vice

versa (Table 3). According to these estimates, the species

rank in the following order, from least to most drought

adapted: Q. ilex ’ Q. faginea , Q. coccifera (Table 3).

Moreover, seed establishment in Q. coccifera was

estimated to be less sensitive to drought length than

the other two species (Table 3, r1 smaller for Q.

coccifera). In addition, the evergreens Q. ilex and Q.

coccifera appear to be segregated with respect to

altitude, with establishment greatest at high elevations

for Q. ilex (Table 3, l3 ¼ 1455.5) and at intermediate

elevations for Q. coccifera (l3 ¼ 913.4).

Reproducing observed patterns.—For all three species,

the equilibrium average frequency given by the SPOM

with LD dispersal was slightly greater than observed (see

LD bars; Fig. 2a). This was unexpected because the

parameter estimates used in the simulations were

obtained by fitting the LD model to the survey data.

However, this bias is possible because of an approxi-

mation of the likelihood function used to generate the

posterior distributions of the parameters (see Eqs. 8–13).

Except for this general overestimation, the spatial

distributions given by simulations of the SPOM

corresponded closely to the observed distributions

(Fig. 3).

With LD dispersal, the SPOM reproduced the

distribution of the species along gradients of altitude

and drought length quite accurately, with the majority

of observations falling within the range predicted by the

model (Fig. 4). Discrepancies can be attributed to the

positive bias discussed above, but this effect was

approximately constant across the gradients in altitude

and drought length.

The model also successfully reproduced the spatial

structure of each species’ distribution (Fig. 4), capturing

differences in the nature, intensity and scale of spatial

structure between the species. The model slightly

overestimated the intensity of spatial structure for Q.

coccifera, but otherwise the model and observations

showed excellent agreement. Importantly, for Q. faginea

and Q. ilex the SPOM reproduced the spatial structure

TABLE 3. Bayesian estimates of model parameters associated with the SPOM model, with local directed (LD) dispersal.

Estimate,
by species x j x exp(j)

Drought length (months)� Annual PET (mm)� Annual mean temp. (8C )§

l1 r1 l2 r1 l2 r2

Q. faginea

Mean 44.5 �8.76 0.0070 5.68 (15) �0.209 �1106.0 (83) �1.05 3 10�5

Lower 23.5 �8.28 0.0105 5.15 �0.254 �1018.4 �1.65 3 10�5

Upper 79.9 �9.59 0.0033 6.19 �0.142 �1214.4 �3.16 3 10�6

Q. ilex

Mean 356.8 �9.51 0.0264 5.70 (16) �0.244 1063.2 (71) �1.88 3 10�5

Lower 226.3 �10.08 0.0172 5.48 �0.261 1020.7 �2.72 3 10�5

Upper 527.4 �9.00 0.0419 5.97 �0.218 1108.6 �1.18 3 10�5

Q. coccifera

Mean 1898.5 �12.32 0.0068 7.65 (66) �0.136 12.9 (59) �0.102
Lower 270.2 �13.37 0.0055 6.95 �0.212 11.7 �0.154
Upper 4790.6 �10.65 0.0086 8.20 �0.0612 14.0 �0.0293

Notes: For each parameter, the posterior mean and 95% credible interval limits (defined by the lower and upper 2.5th percentiles
of the posterior samples) are given. The numbers in parentheses given with mean l values are the percentages of plots with a V
value below the corresponding l value. Therefore (50) indicates that the l value is close to the median, and (0) and (100) indicate
that the l value is outside the range of V values reported in the data, implying a simple increasing or decreasing relationship
between aj,i and V. The quantity x exp(j) is a measure of maximum fecundity. A value of x exp(j) was calculated from each of the
samples from the posterior distribution provided by the Bayesian analysis, and the mean and credible intervals were taken from this
list of values.

� Range 0.5–11.5 months.
� Potential evapotranspiration; range 548.5–1655.7 mm.
§ Range 6.14–23.9.
} Range 28.18–79.56%.
jj Range 300�2100 m.
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much more accurately than did a gradient model with

the same predictor variables (Fig. A1 in Appendix A).

This indicates that their spatial structure could not be

explained by the effects of environmental heterogeneity

alone (gradient model), but could be explained as an

interaction between environmental heterogeneity and

metapopulation dynamics (SPOM).

Simulation experiments

Alternative dispersal modes.—The Monte Carlo sim-

ulations conducted with the SPOM for the four different

dispersal modes, using the parameter estimates from the

LD fits, are summarized in Fig. 2. For mean abundance,

the LD, LR, and GD model predictions gave abun-

dances close to, or greater than the observed value for

each species (Fig. 2a). The most accurate prediction of

abundance was given using LR dispersal, which might

appear to contradict the finding that LD dispersal gave a

superior fit to data (Table 1). However, the model fit for

LR dispersal (Table 1) refers to parameter estimates

generated assuming LR dispersal, whereas these simu-

lations (Fig. 2a) used parameters generated by assuming

LD dispersal (see methods). The explanation of the

apparent superior fit of the LR model in this case is that

the positive bias has lead to on overestimate of

abundance by the best model (LD), which has then

FIG. 3. Comparison of the observed spatial distribution of three Quercus species with output from the stochastic patch
occupancy model (SPOM) with local directed (LD) dispersal, using the mean of the Bayesian posterior distribution for each
parameter value. The output is a snapshot from a single realization of the model, after sufficient iterations to reach quasi-
equilibrium. Parameters were estimated using the survey data, so this comparison is not an independent model validation.

TABLE 3. Extended.

CV precipitation (%)} Altitude (m)jj

l3 r3 l3 r3

79.47 (99) 5.7 3 10�4

57.51 3.1 3 10�4

106.00 9.5 3 10�4

1455.5 (93) 1.72 3 10�6

1203.4 9.31 3 10�7

1754.2 2.58 3 10�6

913.4 (56) �1.43 3 10�6

159.7 �3.69 3 10�6

1415.0 7.80 3 10�7
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mostly been compensated for by the reduction in

abundance caused by changing dispersal to random

rather than directed.

We evaluated the importance of local vs. global

dispersal (given directed dispersal), and directed vs.

random dispersal (given local dispersal) using paired

simulations (Eqs. 17–18). For all three species, LD

dispersal gave a lower frequency than GD dispersal (Fig.

2b). These differences were statistically significant (95%

intervals did not include zero). In relative terms, this

effect was much greater for Q. faginea and Q. coccifera

(reduction in frequency 28% and 42% respectively; Fig.

2a) than it was for Q. ilex (7% reduction). Conversely,

LD dispersal resulted in significantly greater abundances

than LR dispersal for all three species (Fig. 2). Again,

the relative magnitude of this effect was larger for Q.

faginea (þ22%) and Q. coccifera (þ37%) than for Q. ilex

(þ7%), although the absolute effect was very similar for

all three species (Fig. 2). The simulations also identified

a significant interaction between local and directed

FIG. 4. Distributions along environmental gradients (left, middle) and spatial autocorrelation (right): observed (black) and
model simulations with LD dispersal (gray). For simulation results, the heavy gray line is the mean over repeated simulations, and
the lighter gray lines define an envelope containing 95% of the simulation results.
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dispersal: when dispersal was directed toward suitable

patches, local dispersal reduced the regional frequency

of all three species (LD vs. GD in Fig. 2a). Conversely,

when dispersal was random (i.e., occurred independent

of patch suitability), local dispersal increased regional

frequency (LR vs. GR).

The simulations also indicated that both local and

directed dispersal alter the apparent responses of the

species to environmental gradients (Fig. 5). Local

dispersal acts to reduce frequencies in marginal sites

(i.e., areas where altitude or drought length differ greatly

from the values that maximize seed establishment),

beyond the low levels predicted by global dispersal. On

the other hand, local dispersal either increases (Q.

coccifera) or does not affect (Q. faginea, Q. ilex)

abundances in favorable sites (Fig. 5). In this way, local

dispersal amplifies the apparent responses of the species

to environmental gradients. The magnitude of this effect

was large in some cases. For example, the simulations

estimate that local dispersal, resulting in dispersal

FIG. 5. Estimated effect of dispersal mode on distributions along environmental gradients (left, middle), and spatial
autocorrelation (right). The effect of local dispersal (LD minus GD) is shown in black; the effect of directed dispersal (LD minus
LR) is shown in gray. In both cases, the heavy line is the mean over repeated simulations, and the lighter lines define an envelope
containing 95% of the pairwise differences (see Eqs. 17–18 and accompanying text). Envelopes that do not cross zero indicate a
significant effect of dispersal mode.
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limitation, reduces the frequency of Q. faginea in

marginal sites from around 0.4 (GD) to around 0.04

(LD; Fig. 5). Directed dispersal increases frequency

disproportionately at altitudes close to 800 m and

drought lengths of 8–10 months (Fig. 5).

Dispersal mode also had significant effects on

regional-scale spatial structure (Fig. 5). Local dispersal

is estimated to cause a substantial increase in the

intensity of spatial aggregation of all three species

(Fig. 5). Directed dispersal had mixed effects on short-

scale spatial structure. For example, the intensity of

aggregation was decreased for Q. ilex, slightly increased

for Q. coccifera, and unchanged for Q. faginea (Fig. 5);

but for all three species, directed dispersal increased the

intensity of aggregation at larger distances (.75 km).

Perturbation experiments.—Simulations of the SPOM

estimated that the frequencies of all three species are

sensitive to changes in drought length (Fig. 6). A one-

month increase in drought length reduced the average

predicted frequency of Q. faginea and Q. ilex by 47%

and 24% respectively, and increased Q. coccifera by 31%

(Fig. 6). With drought length extended by three months,

Q. faginea and Q. ilex were predicted to fall to near

extinction (�96% reduction for both species; Fig. 6) and

Q. coccifera was predicted to attain a lower frequency

than it would under a one-month increase (þ21%

compared to current frequency; Fig. 6). Importantly,

for two of the species (Q. faginea and Q. coccifera) the

predicted responses to drought length from the SPOM

did not match the predictions of the gradient model in

either nature or magnitude (Fig. 6). For Q. ilex, the

gradient and SPOM models were in very close agree-

ment, with both predicting near extinction with a

drought length change ofþ3 months (Fig. 6).

In model simulations, all three species were sensitive

to changes in disturbance rate (fire frequency), but they

differed in the degree to which their populations were

affected (Fig. 7). Quercus faginea and Q. coccifera were

estimated to suffer the most from more frequent

disturbance: compared to no change, a doubling of

disturbance rate reduced their frequencies by over 70%,

and a tripling of disturbance rate sent them both extinct

(Fig. 7). In contrast, Q. ilex was predicted to be

relatively robust: a doubling reduced frequency by only

17%, and a fivefold change by only 70% (Fig. 7). The

simulated responses to changes in drought and fire

frequency were affected by dispersal mode, with GR

dispersal giving a more sensitive response to change than

the other dispersal modes, although this effect was

relatively small in magnitude (Fig. B2 in Appendix B).

Model simulations predicted varying sensitivity of the

species to changes in habitat cover (Fig. 6 and Appendix

B). Regardless of whether habitat loss was accompanied

by fragmentation, Quercus ilex was predicted to be

relatively insensitive to change, with Q. coccifera being

very sensitive: under 5% habitat cover Q. ilex main-

tained a within-habitat frequency of at least 0.40,

whereas the frequency of Q. coccifera declined to close

to zero (Fig. 7). In contrast, the predicted sensitivity of

Q. faginea depended critically on the nature of habitat

loss (Fig. 7): where habitat loss was accompanied by

fragmentation, the frequency declined to zero at 5%

habitat cover (Fig. 7, middle panel), but with habitat

loss restricted to edges, such that the remaining habitat

was highly aggregated frequency showed no trend with

habitat cover (Fig. 7, right panel).

Additional simulations revealed substantial interac-

tions between the nature of habitat loss and dispersal

mode (Appendix B). Where habitat loss was spatially

random, all three species were highly sensitive to habitat

loss under LR or GR dispersal; intermediate in

sensitivity under LD dispersal; and highly robust under

GD dispersal (Appendix B: Fig. B3 [top panels]). In

contrast, where habitat loss was concentrated at edges,

FIG. 6. Equilibrium average frequency in simulations with altered drought length, given by the SPOM with LD dispersal (gray)
and by the gradient model (black). For simulation results, heavy lines are the mean over 10 simulations, and lighter lines give the
range. The simulations used LD dispersal, with parameters estimated with respect to LD dispersal. Analogous simulation results
using different dispersal modes are given in Appendix B (Fig. B2).

DREW W. PURVES ET AL.90 Ecological Monographs
Vol. 77, No. 1



all three species were highly robust under any dispersal

mode except GR (Appendix B: Fig. B3 [bottom panels]).

DISCUSSION

Oak woodland dynamics in central Spain

An understanding of how abiotic controls on popu-

lation processes translate into differences in community

composition is essential to developing a quantitative

understanding of vegetation dynamics in general, and

the dynamics of Mediterranean woodlands in particular.

Like much of the Mediterranean, the landscape of

central Spain is exceptionally heterogeneous with respect

to land cover (Fig. 1) and physical and climatic factors

(see Table 1 and Rey 1999). By linking environmental

heterogeneity to both seed establishment and variable

disturbance, the SPOM was able to provide a popula-

tion dynamic model that reproduced the observed

variation in abundances of the focal oak species,

Quercus faginea, Q. ilex, and Q. coccifera at several

scales, including total regional abundances (Fig. 2);

spatial structure within the region (Figs. 3–4); and small-

scale variability associated with gradients in drought

length, summer precipitation, temperature, and altitude

(Fig. 4). The three oak species are dominant in this

region and occur throughout much of the Mediterra-

nean (Terradas and Savé 1992, Costa et al. 1998, Grove

and Rackham 2001), and the SPOM presented here

helps to understand the principal factors that regulate

their distribution and abundance.

The SPOM parameter estimates suggest that these

oaks differ in several important respects (Table 3),

leading to contrasting abundances, spatial distributions,

and responses to various perturbations (Figs. 2–7).

However, the results point clearly to a simple classifica-

tion of the species that helps to explain most of the

simulation results. Specifically, Q. ilex is highly fecund,

but is relatively badly adapted to the current climate in

terms of establishment, Q. coccifera has low fecundity

but is very well adapted to the current climate, and Q.

faginea has low fecundity and is relatively badly adapted

to the current climate (Table 3). Thus, Q. ilex can be

considered to be predominantly environment (or re-

source) limited, Q. coccifera dispersal limited, and Q.

faginea limited by both. The simulation results agree

with this observation. When comparing results for the

three species, Q. ilex suffers least from local dispersal

and gains least from directed dispersal (Fig. 2), Q. ilex is

most robust to changes in habitat cover and disturbance

rates (Figs. 6–7), and Q. coccifera is least affected by

increasing drought length (Fig. 6). According to this

classification, the dominance of Q. ilex in this highly

fragmented, highly disturbed region is linked to its high

fecundity, an explanation which is in agreement with

recent empirical observations on Q. ilex seed production

(Pulido and Dı́az 2005).

It is not yet clear how to extrapolate these results to

other regions, especially given the lack of data from

other regions and the uncertainties inherent to the

modeling approach. However, a simple extrapolation

suggests some generalities about the factors that might

determine the relative dominance of these species across

the Mediterranean region, both at present, and in

response to future perturbations. For example, the

relative dominance of Q. ilex and its subspecies would

be expected to be increased by habitat fragmentation or

increases in disturbance rates, whereas increasing

FIG. 7. Equilibrium average frequency of Quercus faginea (gray line), Q. ilex (solid black line), and Q. coccifera (dashed black
line), given by simulations implemented with either altered disturbance (fire frequency) or habitat cover. All simulations used LD
dispersal, with parameters estimated with respect to LD dispersal. Heavy lines are the mean over 10 simulations, and lighter lines
give the range of results. Proportional change in fire frequency refers to change compared to current values, e.g., 2 means a
doubling. To produce different habitat covers, losses and gains of habitat were implemented either (b) randomly or (c) concentrated
at habitat edges. The observed habitat cover is 0.48. Frequency means frequency within suitable habitat. Analogous simulation
results using different dispersal modes are given in Appendix B (Fig. B3).
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drought length would be expected to favor Q. coccifera.

A similar extrapolation would suggest that deciduous

oaks (several of which occur in the Mediterranean

region) would be favored in regions with a more mesic

climate, lower disturbance rates, and less fragmented

habitat. However, it is important to note that the

analysis also points to the importance of other

differences between the species, including contrasting

correlations between altitude and seed establishment.

Overall, the results suggest that species differences in the

degree of environment-limitation vs. dispersal-limitation

are critical to regional-scale vegetation dynamics, but

additional empirical and theoretical studies are neces-

sary to test the generality and validity of this prediction.

Dispersal and environmental heterogeneity

Dispersal processes can fundamentally alter species–

environment interactions, thereby playing a vital role in

landscape-level woodland dynamics. Simulations with

the SPOM suggest that local directed dispersal most

accurately captures the observed distribution of the

three species (Table 2), and that this dispersal mode may

be crucial in maintaining regional abundances of the

species, especially Q. faginea and Q. coccifera (Fig. 2b).

The European Jay is the primary agent that moves

acorns sufficient distances from parent trees to areas

suitable for seedling establishment (Gomez 2003). The

jays bury acorns upon caching, which reduces the

chance of seed predation and enhances germination

rates and seedling survival (Gomez 2003). Therefore,

although the simulation only altered the nature of

dispersal (e.g., directed vs. random), in reality any

reduction in the abundance of jays would also reduce the

number of seeds exchanged between patches (i.e., reduce

inter-patch dispersal), increasing the deleterious effect of

the reduction in the bird population. Together, field

observations and model simulations point to the

European Jay as a keystone species in oak woodlands

(sensu Paine 1966). This in turn implies that manage-

ment of these woodlands must consider the vegetation

and the jays as a tightly coupled, and therefore

potentially fragile, system.

The importance of local directed dispersal, reflecting

animal-mediated seed movement, to regional vegetation

dynamics is not unique to these three Quercus species or

these woodlands. Many forests and woodlands around

the world appear intimately tied to associated animal

dispersers. For example, significant areas of the terres-

trial biosphere are dominated by tree species that depend

on corvid birds for long-distance dispersal (Powell and

Zimmermann 2004). Over 20 Pinus species are associat-

ed with corvids, including Siberian, Japanese, and

Korean stone pine communities, which stretch from

the Ural to the Bering Sea; pinyon pine, which covers

75 000 square miles (46 500 km2) of the southwestern

United States; and whitebark pine, which covers much

of the U.S. Sierra Nevada and northern Rockies

(Lanner 1996). Like the Spanish oak woodlands, all of

these communities are characterized by stand-destroying

fires, followed by bird-mediated recolonization, and the

seed-caching behavior of the birds tends to be distinctly

nonrandom (i.e., directed; Vander Wall and Balda 1977,

Woolfenden and Fitzpatrick 1984, Marzluff and Balda

1992, Lanner 1996, Johnson et al. 1997, Gomez 2003).

However, to our knowledge, this is the first time that

these effects have been included in a population dynamic

model to provide a quantitative estimate of their

importance for the dependent tree species (but see

PLATE 1. European Jay (Garrulus glandarius) swallowing acorns. Photo credit: Peter Preece.
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Purves and Dushoff 2005 for a related study of an

aquatic perennial).

Theoretical explorations also suggest that details of

dispersal that can have important effects on the

abundance and distribution of plant species (reviewed

by Levine and Murrell 2003). In this study, we used the

SPOM to assess the interaction between local and

directed dispersal in a highly heterogeneous environ-

ment. In many respects, the work here confirmed

theoretical expectations. For example, in most simula-

tions local dispersal (whether random or directed)

decreased the predicted frequency of the species (Fig.

2b). This is expected because local dispersal preferen-

tially delivers propagules to patches that are already

occupied by the species where, by definition, the

propagules do not lead to a new local population

(Tilman et al. 1997). Local dispersal also amplified the

species responses to environmental heterogeneity (Fig.

5), implying a narrowing of the realized environmental

niche (Pacala and Hurtt 1993). Also, directed dispersal

increased average frequency in all simulations (Fig. 2b;

Appendix B: Figs. B2 and B3), which is expected in

fragmented landscapes because dispersal prevents seeds

from being lost to unsuitable habitat (Gomez 2003,

Vander Wall and Balda 1997).

However, unlike previous theoretical work, the

SPOM allowed an assessment of the interaction between

local dispersal, directed dispersal, habitat fragmenta-

tion, and environmental heterogeneity (though, for

related studies, see Hiebeler 2000, King and With

2002, Purves and Dushoff 2005; and see Svenning

2001, Svenning and Skov 2002 for related empirical

studies). For example, simulations suggested that either

local dispersal, or directed dispersal, but not both, are

needed to sustain viable regional populations of these

species (Fig. 2a). This interaction is particularly prom-

inent in these Spanish oak woodlands because of the

fragmented but aggregated pattern of suitable habitat

(Fig. 1). Thus, local dispersal tends to deliver seeds to

suitable habitat even if dispersal is not actively directed

toward suitable patches (Fig. 1b, c). This also explains

why the predicted response of the species to changes in

habitat cover depended on the combination of dispersal

mode and nature of habitat loss. Either local or directed

dispersal conferred robustness to edge-based habitat

loss, because in this case the remaining habitat is

aggregated, in which case local dispersal delivers seeds

to suitable habitat. But under random habitat loss, only

global, directed dispersal conferred robustness, because

in this case random dispersal always wastes most seed to

unsuitable habitat, and local dispersal does not move

seeds over sufficient distances to reach from one patch of

suitable habitat to the next. A similar effect is evident in

the estimated loss of frequency due to local dispersal in

the current landscape (Fig. 2b; LD minus GD dispersal).

The reduction was smaller than might be expected, given

that local dispersal results in nearly all seeds moving to

closest-neighbor patches. This is explained by the

pattern of variation in the environmental conditions

within suitable patches. This variation is spatially

autocorrelated, such that local dispersal tends to deliver

seeds to sites where local environmental conditions are

favorable for seed establishment (Bolker 2003, Snyder

and Chesson 2003). This positive effect of local dispersal

compensates for the increased chance of landing in an

occupied patch (Tilman et al. 1997), leaving a small

effect of local vs.global dispersal.

Model utility, limitation, and future directions

The SPOM employed here was introduced to provide

a population dynamic model that is capable of capturing

species–environment correlations, which have tradition-

ally been addressed using statistical approaches such as

gradient analysis. We show how both environment-

specific and demographic parameters can be estimated

from survey data by coupling the SPOM to a Bayesian

analysis (Tables 2 and 3). The end result is a fairly

simple, yet semi-mechanistic parameterized population

dynamic model that is capable of reproducing many

observed features of the distributions of three co-

occurring oak species (Figs. 2–4). The excellent fit to

the survey data could not have been achieved by

separate applications of gradient analyses (lack spatially

dependent processes; see Fig. A1 in Appendix A),

traditional SPOMs (lack environmental forcing), or

more complex individual-based or ecosystem models

(not readily parameterized from data). Importantly, the

SPOM presented provides an initial framework for

estimating the importance of different ecological pro-

cesses in maintaining the current state of the vegetation

(Figs. 2, 5). It also yields predictions of potential

responses to perturbations in the biotic and abiotic

environment (Figs. 6–7), highlighting directions for

future modeling and field studies. Species responses to

the environment result from complex interactions

between a number of abiotic and biotic processes

(Crawley 1997), but as we illustrate here, it is possible

to develop and apply a simple modeling framework that

captures part of this complexity.

We deliberately simplified many aspects of the model

for a few key reasons. First, one of our goals was to

illustrate the modeling approach by beginning with a

fairly simple model that can be described by a few key

processes. Second, although the survey plots provide an

enormous amount of data, as do many inventory data-

sets, the data were limited in temporal scope (i.e., a

snapshot) and the types of measurements represented

(only presences–absence information). Third, we chose

to maximize computational efficiency, and developed a

simple model with tractable behavior that could be

parameterized from survey data in a transparent

manner. These simplifications call for caution in

interpreting results, because alternative formulations

may have given a similar fit to data (model uncertainty;

Higgins et al. 2004). However, more biological detail can
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be easily incorporated into the SPOM, providing a

potentially more realistic modeling framework.

There are several ways that the SPOM could be

modified to make it more realistic. First, and most

important, we were forced to assume that current

distributions are near equilibrium (this assumption is

shared by most studies of species–environment relation-

ships, including gradient analysis). But this may not be

the case, because land use in this region has undergone

significant changes over recent decades (Bramsnaes

1992, Blondel and Aronson 1995, Gomez-Limon and

Fernandez 1999, Grove and Rackham 2001). However,

if time-series data are available then this assumption can

be relaxed. For example, Wu et al. (2002) introduced a

method to parameterize a SPOM using information on

historical changes in habitat cover, without assuming

equilibrium. Although there is an increasing availability

of data both on the historical distributions of plant

species (e.g., Brewer et al. [2002] for European Quercus)

and on historical land-use change (e.g., Ramankutty and

Foley 1999, Hurtt et al. 2002, 2006), such data are not

currently available for the woodlands in this study.

Combining survey and historical data to estimate

parameters for landscape models would greatly im-

provement our ability to predict vegetation responses to

future climate change.

Second, our SPOM does not include any interspecific

interactions, which have the potential to modify species

distributions (Pacala and Hurtt 1993, Leathwick and

Austin 2001; see Zavala and Zea 2004 for Mediterra-

nean pine–oak woodlands). These effects were not

included here because the survey data were only

available for a subset of the woody species in the

landscape, so only a small subset of competitive

interactions could have been studied. In addition,

observations suggest that facilitation, as well as compe-

tition, is likely to be important in this region (Gomez-

Aparicio et al. 2004), which leaves great uncertainty in

how interspecific interactions should be incorporated.

(For example, the realized niches of these species could

be larger than their fundamental niches, due to the

effects of facilitation.)

Competitive and facilitative interactions can be

incorporated into the SPOM framework readily, for

example, by making establishment and/or disturbance

depend on the species that currently occupy a site (e.g.,

see Prakash and de Roos 2004). However, the result is a

metacommunity model, the theoretical foundations and

applicability of which have only just begun to be

explored (see Leibold et al. 2004). In the oak woodland

case, such a metacommunity model would most likely be

more flexible than the SPOM we used, but it could not

be properly constrained by the limited (snapshot,

presence–absence, limited number of species) data. In

situations where more complete data are available,

parameterized metacommunity models could offer a

powerful approach to understanding the interactions

between environmental forcing, dispersal processes, and

interspecific interactions in complex landscapes.

Third, the approximation to the likelihood (Eqs. 9–

13), which is also contingent upon the equilibrium

assumption, is another potential source of error

affecting the model parameterization and predictions.

We could have treated Sj,i as a latent variable, thereby

bypassing the need for the approximation in Eq. 13. The

Bayesian framework is particularly well-suited for

dealing with latent variables (Cappé and Robert 2000,

Clark 2005), but in this case the approach would have

added over 30 000 unknown quantities (i.e., an Sj,i for

each species and site). The modeling approach the we

applied it is already computationally demanding, hence

we choose to forego the latent variable option because it

would have greatly increased the number of SPOM and

M-H iterations required for obtaining posterior samples.

In addition, the fit to observations presented here

suggests that the approximation we used was capable

of estimating appropriate parameter values (e.g., Fig. 4).

However, implementation of a full Bayesian analysis

that includes a hierarchical representation of data, latent

variables, and parameters (e.g., Clark 2005) is clearly a

method that deserves further attention for fitting SPOM

models to field data.

Finally, it is important to bear in mind the key

differences between the SPOM approach, gradient

analysis, and individual-based modeling. Unlike gradi-

ent modeling the SPOM offers a model grounded in

population dynamic processes, including dispersal, with

an explicit timescale. It can therefore address biological

questions such as the effects of demographic rates (local

extinction, colonization, dispersal [e.g., Fig. 2]) and

applied questions such as changes in habitat cover,

disturbance, and climatic conditions (e.g., Fig. 7). But in

the form presented here, the SPOM approach shares

some important limitations with gradient analysis,

including the equilibrium assumption discussed above.

Unlike individual-based models, SPOMs can be imple-

mented efficiently at large spatial scales, and can be

parameterized readily from survey data; but individual-

based models offer a level of biological realism that

cannot be approached by models that reduce the state of

a plant community to the presence or absence of the

component species. Because of these different benefits

and limitations, we anticipate that a variety of modeling

approaches will continue to be important in studying

regional vegetation dynamics in the future. However,

unlike the other approaches, the SPOM approach had

not been applied to studying large-scale vegetation

dynamics previously. The novel modeling approach

presented has the potential to improve our heuristic

and predictive understanding of vegetation dynamics.
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López-Soria, L., and C. Castell. 1992. Comparative genet
survival after fire in woody Mediterranean species. Oecologia
53:493–499.

Marzluff, J. M., and R. P. Balda. 1992. The Pinyon Jay. T. and
A. D. Poyser, London, UK.

Moorcroft, P. R., G. C. Hurtt, and S. W. Pacala. 2001. A
method for scaling vegetation dynamics: the ecosystem
demography model (ED). Ecological Monographs 71:557–
585.

Naveh, Z. 1990. Fire in the Mediterranean: a landscape
ecological perspective. Pages 1–20 in J. G. Goldammer and
M. J. Jenkins, editors. Fire ecosystem dynamics. SPB
Academic Publishing, The Hague, Germany.

O’Hara, R. B., E. Arjas, H. Toivonen, and I Hanski. 2002.
Bayesian analysis of metapopulation data. Ecology 83:2408–
2415.

Pacala, S. W., C. D. Canham, J. Saponara, J. A. Silander, R. K.
Kobe, and E. Ribbens. 1996. Forest models defined by field
measurements: estimation, error analysis and dynamics.
Ecological Monographs 66:1–43.

Pacala, S. W., and G. C. Hurtt. 1993. Terrestrial vegetation and
climate change: integrating models and experiments. Pages
57–74 in P. Kareiva and J. Kingsolver, editors. Biotic
interactions and global change. Sinauer Associates, Sunder-
land, Massachusetts, USA.

Paine, R. T. 1966. Food web complexity and species diversity.
American Naturalist 100:65–75.

Pearson, R. G., and T. P. Dawson. 2003. Predicting the impacts
of climate change on the distribution of species: are
bioclimate envelope models useful? Global Ecology and
Biogeography 12:361–371.

Powell, J. A., and N. E. Zimmermann. 2004. Multiscale analysis
of active seed dispersal contributes to resolving Reid’s
paradox. Ecology 85:490–506.

Prakash, S., and A. M. de Roos. 2004. Habitat destruction in
mutualistic metacommunities. Theoretical Population Biolo-
gy 65:153–163.

Primack, R. B. 1998. Essentials of conservation biology.
Sinauer Associates, Sunderland, Massachusetts, USA.

Pulido, F. J., and M. Dı́az. 2005. Regeneration of a
Mediterranean oak: a whole-cycle approach. EcoScience 12:
92–102.

Purves, D. W., and J. Dushoff. 2005. Directed seed dispersal
and metapopulation response to habitat loss and disturbance:
application to Eichhornia paniculata. Journal of Ecology 93:
658–669.

Purves, D. W., and R. Law. 2002. Fine-scale spatial structure in
a grassland community: quantifying the plant’s-eye view.
Journal of Ecology 90:121–129.

Ramankutty, N., and J. A. Foley. 1999. Estimating historical
changes in land cover: North American croplands from 1850
to 1992. Global Ecology and Biogeography 8:381–396.

Retana, J., J. M. Espelta, M. Gracia, and M. Riba. 1999.
Seedling recruitment. Pages 89–103 in F. Rodà, J. Retana, C.
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